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Abstract—The effect of electric and magnetic node arrangement
on the dispersion characteristics of the multiresolution time-do-
main (MRTD) technique is investigated in this paper. It is first
noted that, by adopting multiresolution analysis principles, the dis-
persion behavior of an arbitrary order MRTD scheme can be ex-
tracted from the analysis of the corresponding S-MRTD scheme,
which is based on scaling functions only. Namely, the introduction
of one wavelet level is expected to bring about a refinement in the
resolution of S-MRTD by a factor of two. However, this contra-
dicts several dispersion analyses of MRTD schemes that have been
recently presented in the literature. This conflict between theoret-
ical predictions and numerical observations is resolved through the
proof that the introduction of wavelets does not result in the ex-
pected enhancement of resolution of an S-MRTD scheme, unless a
certain arrangement of electric and magnetic field nodes is imple-
mented.

Index Terms—FDTD, MRTD, multiresolution analysis, numer-
ical dispersion.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) technique of-
fers a mathematically straightforward and inherently ver-

satile method for the analysis of arbitrary electromagnetic ge-
ometries, at the expense of computational resources. Indeed,
since Yee’s scheme [1] is only second-order accurate and sen-
sitive to numerical dispersion, a dense discretization of at least
ten, but usually 25, points per wavelength is necessary for the
extraction of a convergent solution. Therefore, the FDTD treat-
ment of either electrically large geometries or fine detail struc-
tures typically results in a computationally intensive, memory
and execution time-consuming calculation.

As an alternative to the conventional FDTD, several high-
order numerical techniques have been developed [2] aimed
at the discretization of electromagnetic structures at rates that
may even approach the Nyquist limit. Furthermore, the incor-
poration of subgridding algorithms in the FDTD scheme [3]
has demonstrated the potential of disconnecting the mean cell
size within a domain from the size of the smallest geometric
detail that is contained in the latter. Thus, a significant reduction
in the computational cost, connected with the application of
FDTD to complex geometries, appears to be attainable. Re-
cently, wavelet-based time-domain methods (such as the the
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multiresolution time-domain (MRTD) technique) employing
Battle–Lemarie, Daubechies, biorthogonal, and Haar wavelets
were presented in [4]–[9] and references therein. Despite the fact
that several techniques have been proposed for the mathematical
derivation of these methods, in all cases, the introduction of one
wavelet level in a numerical scheme formulated with scaling
functions only (often referred to as S-MRTD), is expected to
increase its effective resolution by a factor of two (“dyadic”
property), as a direct consequence of multiresolution analysis
(MRA) principles [10].

Nevertheless, dispersion analyses of several MRTD schemes
have indicated that the addition of wavelets gives rise to phe-
nomena that are not consistent with this expectation. In par-
ticular, the dispersion analysis of the Battle–Lemarie wavelet-
based W-MRTD scheme that was carried out in [4] showed
an only incremental improvement in its accuracy, compared to
the corresponding S-MRTD scheme. This was accompanied by
the observation of nonphysical modes that were attributed to
spurious side effects of the use of wavelets. Moreover, a Haar
MRTD dispersion analysis, presented in [7], led to the conclu-
sion that almost no accuracy improvement was produced by the
introduction of zeroth-order Haar wavelets to the corresponding
S-MRTD scheme, which in this case coincided with FDTD.
This conclusion agreed with the results of the relevant numer-
ical study of [8] and provided the additional information that
the effect of boundary conditions, which were supposed to be
employed as a means of coupling wavelet coefficients to the ex-
citation source [9], was actually negligible. Thus, it can safely
be asserted that both Battle–Lemarie and Haar MRTD schemes
under study in [4], [7], and [8] were formulated in a way that in-
herently prohibited the use of wavelets from resulting in a mul-
tiresolution analysis-consistent improvement of the dispersion
properties of the underlying coarse grid scheme (this being ei-
ther Battle–Lemarie-based S-MRTD or FDTD).

In this paper, the source of the aforementioned contradiction is
investigated and the conditions under which MRTD schemes at-
tain their expected dispersion properties are sought. Such a study
is particularly important for the reason that a future direction of
current wavelet research efforts is the development of microwave
computer-aided design (CAD)-oriented algorithms. This moti-
vates the assembly of theoretical tools that enable a reliable pre-
diction of the accuracy properties of an MRTD type of scheme,
for a given number of wavelet levels and an arbitrary basis. The
current study is developed in three stages: Initially, the concept
of equivalent grid points in an MRTD mesh is introduced. Then,
the connection between the arrangement of electric and magnetic
scaling functions in the mesh and the equivalent grid points that
stem from the use of a certain number of wavelet levels is de-
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duced. Hence, a condition for the offset of electric and magnetic
scaling functions in the mesh (which in FDTD equals half a cell)
that need be imposed, for the equivalent grid points to be cor-
rectly positioned in the domain, is derived. Finally, a dispersion
analysis based on a modified Fourier method recently introduced
by the authors and briefly described in the Appendix, is used to
confirm that the previous condition is sufficient for the achieve-
ment of the expected MRTD accuracy. This dispersion analysis
is validated by a series of numerical experiments, whose results
are shown to be in absolute agreement with it.

II. ELECTRIC AND MAGNETIC NODE ARRANGEMENT AND

EQUIVALENT GRID POINTS IN MRTD

In this section, MRTD is applied to the following system of
two-dimensional (2-D) Maxwell’s equations:

(1)

(2)

(3)

with . Based on the method outlined in [4], update
equations are derived by the method of moments, assuming
a spatial expansion of electromagnetic field components in
scaling and wavelet functions of an arbitrary basis and up to
arbitrary orders and in the - and -directions,
respectively. However, our analysis is restricted to dyadic
wavelet transforms, as they are the most commonly used for the
purpose of adaptively solving partial differential equations. In
the subsequent development, the discretization of a 2-D domain
(in which field solutions are sought) in cells of by is
pursued, by means of a wavelet basis, defined by the scaling
function and the so-called mother wavelet [10]. Then,

denotes the th scaling function in the
direction. Accordingly, the wavelet functions of order

that recursively refine the resolution of are defined as :
, where .

A basis of pulse functions (defined as in
[4]), is employed for field expansion in time, where denotes
the time step, limited by the choice of and through the
stability condition. Given these definitions, are
expressed in the form of the following orthogonal expansions:

(4)

(5)

(6)

where , , and . Thus,
while half a time step offset between the update of electric and
magnetic field terms is kept (as in FDTD), the offset of electric
and magnetic scaling cells in the- and -directions is left as
a parameter under investigation. Most MRTD studies, with the
notable exception of [11], adopt the choice of ,
based on the FDTD practice. In this paper, a systematic way of
determining these offsets is set forth by introducing the notion
of equivalent MRTD grid points.

Assume that a certain scaling function basis generates elec-
tric field grid points in one dimension ( ): ,

. Then, the introduction of wavelets of or-
ders , refines the mesh in the-direction
by a factor of , since each wavelet level succes-
sively doubles the resolution of the underlying approximation.
In mathematical terms, the expansion of (4) can be cast in
the next equivalent form [10]

(7)
where , , and

is the scaling basis that produces by
itself an approximation of the same resolution as (4). In fact, the
latter corresponds to the hierarchical multiresolution decompo-
sition of the former and the coefficients in (4) can directly be
deduced from the ones in (7) via the wavelet transform. This
wavelet-induced mesh refinement can also be perceived as a
procedure of generating equivalent grid points that give rise to
a mesh of cell sizes , . Similar observations hold
for (5) and (6).
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Fig. 1. Haar scaling and mother wavelet functions (space domain).

Fig. 2. Electric/magnetic field equivalent grid points for the zeroth-order Haar
MRTD in one dimension, under formulation I.

This argument is demonstrated for a zeroth-order Haar
MRTD scheme, utilizing Haar scaling and zeroth-order wavelet
functions (Fig. 1), in Figs. 2 and 3, which depict the equivalent
grid points that are generated, in both cases, in one dimension.
It is noted that, in general, linear combinations of scaling
and wavelet functions yield electric field values at points:

, with .
In our 2-D example, these figures represent-cutsof the mesh,
including and grid points (which are necessary for
the approximation of -partial derivatives involved in the
updates). Up to a normalization multiplicative constant, the
field values at equivalent grid points within each cell are com-
puted as the sum and the difference of scaling and zeroth-order
wavelet terms, respectively. Accordingly, equivalent grid
points are located at .
However, the purpose of using wavelets is to implement in this
“new” mesh of equivalent grid points the method produced
by scaling functions only, at a resolution that is finer (in the

-direction) by the wavelet refinement factor. Hence, if this
method defines half a scaling cell offset between the electric
and magnetic nodes, the wavelet augmented method has to
define half anequivalentcell offset between the equivalent

Fig. 3. Electric/magnetic field equivalent grid points for zeroth-order Haar
MRTD in one dimension, under formulation II.

electric/magnetic grid points in this direction. The choice of
and that is consistent with this requirement is as follows:

(8)

Fig. 2 shows the node arrangement in the zeroth-order Haar
MRTD, under the common convention of half a cell offset
between electric/magnetic scaling cells, henceforth referred to
as formulation I. Apparently, equivalent electric and magnetic
equivalent nodes are now collocated. On the other hand, if
the separation of electric and magnetic scaling cells is chosen
in consistence with (8), which in this case yields an offset of
one-quarter of a cell (Fig. 3), the equivalent grid points are
leap-frogged in space and correctly correspond to the mesh
of an FDTD scheme of cell size . This approach will be
hereafter referred to as formulation II.

Despite the fact that the electric/magnetic equivalent grid
point collocation in formulation I was demonstrated for the
Haar basis, its origin is the dyadic nature of the wavelet
transforms under consideration, in the sense of the argument
that was earlier developed. It is the purpose of the following
dispersion analyses and numerical experiments to show that the
difference in equivalent grids produced by formulations I and II
results in different dispersion properties that render the former
inconsistent while the latter consistent with MRA concepts.

III. GRIDDING EFFECT ON THEACCURACY OF THEHAAR

WAVELET-BASED MRTD

A. Derivation of Arbitrary Order Haar MRTD Scheme

The relative simplicity of the Haar basis allows for the deriva-
tion and dispersion analysis of an arbitrary order scheme ap-
plied to (1)–(3). The update equations of the scheme are derived
through the method of moments as in [4] and evaluating ana-
lytically the moment integrals pertinent to this technique. Field
expansions of the type of (4)–(6) are assumed, whereand
now denote the Haar scaling and mother wavelet functions, re-
spectively (Fig. 1). In order to illustrate the difference between
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formulations I and II, the form that the update equation of elec-
tric field scaling terms assumes in each one of them, is given
below. In formulation I, this reads as

(9)

while in formulation II, it is modified as

(10)

In (9), , , and

where denotes Kronecker’s delta function. In (10),
and . When

, (9) shows that scaling and wavelet terms are
de-coupled, which is consistent with the relevant observations
in [7], [9]. This is not the case for (10) though, where scaling
and wavelet terms are coupled for all MRTD orders. The same
observations hold for the rest of the update equations that are
similarly derived.

B. Stability and Dispersion Analysis

Implementing the modified Fourier method described in the
Appendix, a dispersion analysis of arbitrary order Haar MRTD
is carried out for both formulations I and II. Under the Fourier
transform definition

(11)

the Fourier transforms of Haar scaling and wavelet functions,
with respect to a normalized wavenumber variable, are

(12)

Substituting these expressions into (44) of the Appendix leads
to

(13)

Furthermore, the following substitutions are made into the fi-
nite-difference equations of the following two schemes:

(14)

(15)

(16)

(17)

with

(18)

(19)

and and . Similar substitutions are
made for magnetic field components, taking into account the
different conventions for electric/magnetic node separation.
The condition that the resulting linear systems with respect
to have nontrivial solutions yields the
following dispersion relationships for formulations I and II,
respectively:

(20)

(21)
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Fig. 4. Dispersion curves for propagation in (1,0) in Haar MRTD mesh
(formulation I) of orders 0 to 3,� = 0:05625.

Fig. 5. Dispersion curves for propagation in (1,0) in Haar MRTD mesh
(formulation II) of orders 0 to 3,� = 0:05625.

where , , and .
As proved in [12], the numerical scheme produced by means
of a Haar scaling basis is FDTD itself, which can serve here
as a measure of comparison for the accuracy of the two for-
mulations under investigation. Indeed, comparing (20) and (21)
with the respective formulas provided in [13], it is readily con-
cluded that Haar MRTD under formulation I effectively imple-
ments an FDTD scheme of cell size, while
Haar MRTD under formulation II attains an MRA consistent
effective cell size of . This is graphically demon-
strated in Figs. 4 and 5 that depict Haar MRTD dispersion curves
for propagation in the direction and value of the so-called
Courant–Friedrichs–Lewy number .
Moreover, the analytical dispersion relationship is plotted and
denoted as “linear.” It is thus shown that Haar MRTD under
formulation I always finds itself one level of resolution (per
direction) below the expected, while formulation II exhibits a
consistent dispersion performance. In particular, for

, (20) coincides with the dispersion relationship for
FDTD of cell size (which is the scaling cell size)
and therefore it is concluded that the addition of zeroth-order
wavelets does not improve the accuracy of Haar MRTD under
formulation I (as a consequence of the fact that, in this case,
scaling and wavelet update equations are uncoupled).

TABLE I
RESONANT FREQUENCIES(IN GHz) FOR THE2-D CAVITY PROBLEM AND

RELATIVE ERROR(DEGREES OFFREEDOM= 32� 32)

Finally, stability criteria for the two formulations can be de-
duced from solvability conditions of (20) and (21) and assume
the form

(22)

(23)

C. Numerical Results

In order to numerically validate the results of the preceding
dispersion analysis, FDTD and MRTD (formulations I and II)
solutions for the modes of a square air cavity struc-
ture of dimensions 32 cm 32 cm are computed and com-
pared. Haar MRTD schemes of orders 2 by 2, 3 by 3, and 4 by 4
(in and ), corresponding to meshes of 4 4, 2 2, and
1 1 scaling cells are applied to the structure, along with a
32 32 cell FDTD. Hence, in all cases, the total number of de-
grees of freedom remains constant. Hard boundary conditions
are modeled in MRTD by applying image theory for the update
of magnetic field coefficients at the boundaries, as explained in
[14]. Under these gridding conditions, our dispersion analysis
predicts that FDTD and MRTD (formulation II) have the same
accuracy, as they use the same number of degrees of freedom
(thresholding is not applied in this study). This has been also nu-
merically verified; the resonant frequencies that were extracted
by FDTD and all MRTD schemes of formulation II, assume the

arithmetic values, some of which are given in Table I. On
the contrary, formulation I shows a significantly worse accu-
racy, following that of an FDTD scheme of a 1616 mesh. All
simulations were performed at 0.9 of the stability limit for each
scheme and frequency domain data were extracted from time
domain data over 65 536 time steps. The numerical frequencies
for all eigenmodes were found to agree well with their theo-
retical values, as predicted by (20) and (21). appears to
be an exception for formulation II. Yet, in this case, the theoret-
ical dispersion error [given by (21)] is0.0076% and, therefore,
numerical accuracy of the calculations clearly dominates phase
errors in the final result. It is thus concluded that Haar MRTD
under formulation II attains its expected resolution, just as the
dispersion analysis showed and in contradiction to formulation
I. Finally, the stable character of the proposed Haar MRTD for-
mulation II is demonstrated by the electric field spatial distribu-
tions for and modes of the cavity, depicted in Figs. 6
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Fig. 6. Electric field distribution forTE mode obtained by an order 4 by 4
Haar MRTD (form. II), with a 1 by 1 scaling mesh.

Fig. 7. Electric field distribution forTE mode obtained by an order 4 by 4
Haar MRTD (form. II), with a 1 by 1 scaling mesh.

and 7. Both modes were resolved by a 11 mesh of an order
4 by order 4 Haar MRTD (five wavelet levels per direction).

IV. GRIDDING EFFECT ON THEACCURACY OF

BATTLE–LEMARIE WAVELET-BASED MRTD

A. Derivation of W-MRTD Scheme

For the purpose of showing the generality of the gridding-
related effects on the dispersion of MRTD that were pointed
out for Haar-based schemes, the case study of a one-dimen-
sional Battle–Lemarie wavelet-ased scheme (W-MRTD [4]) is
presented in this section. In particular, the following system of
Maxwell’s equations is considered:

(24)

(25)

and discretized using Battle–Lemarie scaling and zeroth-order
wavelet functions (Fig. 8) via the method of moments. Electric
and magnetic field components are expanded in terms of the
Battle–Lemarie basis as follows:

(26)

Fig. 8. Battle–Lemarie scaling and mother wavelet functions (space domain).

(27)

with , , and is the electric/mag-
netic node offset that is again left as a parameter under inves-
tigation. The corresponding finite-difference equations assume
the generic form

(28)

(29)

where the indicated summations extend over the “stencil” of
the method. The stencil coefficients are computed by numeri-
cally evaluating integrals of Battle–Lemarie scaling and wavelet
functions (in the spectral domain) that arise in the application of
the method of moments for the derivation of (28) and (29). In
particular, the explicit formulas for those read

(30)

(31)

(32)
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TABLE II
STENCIL COEFFICIENTS FOR THEW-MRTD SCHEME (FORMULATION II)

(33)

where and are provided in [4]. In [4], the parameter
is set equal to 1/2 (formulation I) and, thus, the apparent symme-
tries in the form of stencil coefficients (30)–(33) render the elec-
tric and magnetic field update equations dual. On the other hand,
if, following formulation II and condition (8), is set equal to
1/4, the only remaining symmetries are: and

. Some sample values of , , and
are given in Table II. Their corresponding values under

formulation I can be retrieved from [4].

B. Stability and Dispersion Analysis

A comparative stability and dispersion analysis of W-MRTD
schemes under formulations I and II, according to the method
described in the Appendix, leads to the following dispersion re-
lationship:

(34)

where

(35)

(36)

and and , . The stability
limit is numerically determined as the time step for which (34)
yields complex frequency values that practically represent the
transition of the numerical solution into the instability regime, in
which it grows exponentially. In [15], the same calculation was
based on the analytical derivation of lower bounds for the time
step that guaranteed stability. However, one can easily verify

Fig. 9. Dispersion curves for W-MRTD (formulations I and II), S-MRTD,
and FDTD.

numerically that these bounds are well below the actual Courant
limit of W-MRTD and are therefore too restrictive.

Using the stencil coefficients of formulations I and II, (34)
was employed to deduce the dispersion curves of the two
schemes for , and the range of-index variation
from to and . Both curves are depicted in Fig. 9.
For comparison purposes, the dispersion curves of the so-called
S-MRTD (utilizing Battle–Lemarie scaling functions only) and
FDTD are also appended. As before, the analytical dispersion
relationship is indicated as “linear.”

Defining the turning point of the dispersion curve as the ef-
fective Nyquist limit of the corresponding scheme, it is observed
that, for S-MRTD, this limit is , for W-MRTD under for-
mulation I it is , while for W-MRTD under formula-
tion II it is , which shows that the former is inconsistent
with MRA principles, while the latter does attain the expected
refinement in resolution (compared to S-MRTD) by a factor of
two. In fact, the dispersion curve of W-MRTD, formulation II
can be readily extrapolated from the one of S-MRTD, by re-
placing with in its expression.

This is also reflected in the stability condition for the two
schemes. For S-MRTD, this condition is ,
for W-MRTD, formulation I, it becomes , and
for W-MRTD, formulation II, . Hence,

(37)

Thus, the previous conclusion is verified from a stability per-
spective: The addition of wavelets under the node arrangement
of formulation I refines the scaling-based discretization by a
factor of less than 1.5, while formulation II leads to a com-
plete exploitation of the wavelets, doubling the resolution of
S-MRTD.

It is noted that the results of our dispersion analysis of
W-MRTD (formulation I) are consistent with those of [4],
except for the fact that in [4] the dispersion diagram appears
to consist of two branches, whence the claim that W-MRTD
suffers from “spurious modes” was supported. However,
as discussed in [16], our single branch diagram completely
describes W-MRTD dispersion. With regards to the origin
of modes that were observed in numerical experiments of
[4] and were misconstrued as spurious (being attributed to



SARRIS AND KATEHI: FUNDAMENTAL GRIDDING-RELATED DISPERSION EFFECTS IN MRTD SCHEMES 2255

Fig. 10. W-MRTD computational domain for the 1-D cavity case study.

TABLE III
RESONANT FREQUENCIES(IN GHz) FOR THE 1-D CAVITY PROBLEM

AND RELATIVE ERROR FORW-MRTD (I, II)

the second branch of the dispersion diagram), it was shown
to be the fact that the effective Nyquist limit of this scheme
lay within the spectral support of the Battle–Lemarie wavelet
function. For this reason, whenever this function is part of the
initial conditions, it excites alias frequencies (that are also well
predicted by our dispersion analysis).

C. Numerical Results

A simple numerical experiment that validates the dispersion
analysis of the two W-MRTD schemes is presented in this sec-
tion. In particular, a four-cell computational domain defined by
three interior and two boundary Battle–Lemarie scaling cells
( cm) terminated into hard boundary conditions (that
are implemented by image theory) is solved as a one-dimen-
sional (1-D) cavity (Fig. 10). Then, the resonant frequencies

[GHz] of the cavity, corresponding to normalized
wavenumbers , are numerically determined from
time-domain data of 8192 time steps. For both schemes, a time
step equal to 0.5 of their stability limit is used ( ps
and ps, respectively), for the results to be directly
comparable. The stencil value is set equal to 9. The sum of a
scaling and a wavelet function located in the middle of the do-
main is used as the initial condition. By inspection of the spec-
tral form of Battle–Lemarie scaling and wavelet functions [4], it
is readily concluded that this kind of excitation injects into the
grid normalized wavenumbers ranging from 0 to .

The resonant frequencies for the first seven modes of the
cavity, obtained by the two W-MRTD schemes under compar-
ison, are listed in Table III. It is clearly shown that W-MRTD
under formulation II is consistently more accurate than formu-
lation I, except for wavenumbers around the effective Nyquist
limit of the latter, where its error changes sign (as it reaches this
limit) and therefore assumes values close to zero. However, from
that point on, the accuracy difference between the two schemes
becomes significant. For example, when , formu-
lation I yields an alias frequency, presenting a relative error of

24.4632%. It is noted that this frequency is a product of inac-
curacy, not a spurious mode, as was previously misinterpreted

Fig. 11. Electric field spectral magnitude for the 1-D cavity problem, derived
with W-MRTD under formulations I and II.

Fig. 12. Dispersion curve (- -) and electric field spectral magnitude (–) for the
1-D cavity case study with W-MRTD formulation I.

Fig. 13. Dispersion curve (- -) and electric field spectral magnitude (–) for the
1-D cavity case study with W-MRTD formulation II.

[4] and would appear in any scheme were that excited with
wavenumbers above its Nyquist limit.

For the same geometry, numerical and theoretical results are
presented and compared in Figs. 11–13. In particular, Fig. 11
depicts electric field spectral magnitudes derived by W-MRTD
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under formulations I and II. Thus, the previously mentioned
alias frequency, which corrupts the spectrum derived via
formulation I, is clearly demonstrated, along with the ability
of the second W-MRTD formulation to accurately resolve all
cavity modes that are excited. In Figs. 12 and 13, the dispersion
curves of the two W-MRTD schemes and the cavity field pat-
terns that are deduced via their application, are jointly plotted.
Square marks indicate the theoretical position of each of the
seven modes on the dispersion curve of the corresponding
scheme. The fact that, in all cases, the peaks of the electric field
intersect the dispersion curve at the square marks, constitutes a
numerical validation of our dispersion analysis. Furthermore,
Fig. 12 provides an explanation of the way the “spurious” peak
that appears in formulation I field pattern, is actually produced,
as an alias frequency corresponding to the seventh cavity mode.

V. CONCLUSION

A necessary condition for the development of MRTD
schemes with a consistent accuracy performance has been
derived by means of dispersion analysis and confirmed by
numerical experiments. It is also noted that, under the same
condition, the two different methods of deriving wavelet
schemes presented so far [4], [5] become equivalent. Thus,
this work contributes to the fundamental understanding of the
numerical properties of wavelet schemes and their connection
to MRA principles, definitely resolving discrepancies and
contradictions that existed in the MRTD literature for the last
five years.

APPENDIX

THE MODIFIED FOURIERANALYSIS METHOD FORMRTD

For the purpose of formally performing a Fourier dispersion
analysis of MRTD, the coefficients of electromagnetic field ex-
pansions in scaling and wavelet functions are first cast in the
form of an inverse Fourier transform. For example, considering
(4), one can use the well-known convolution theorem in order
to transform the following expression [derived by means of the
orthogonality properties of basis functions in (4)]:

(38)

into the form

(39)
with and as in (19), while

(40)

and is the spatio–temporal Fourier transform of
. Moreover, and are Fourier transforms of scaling

and pulse functions and with respect tonormalizedvari-
ables , , and , according to the definition of
(11).

Following the same procedure, and after some trivial alge-
braic manipulations, scaling–wavelet, wavelet–scaling, and

wavelet–wavelet coefficients can be cast in a similar form. In
particular,

(41)

(42)

(43)

where

(44)

Magnetic field components are also transformed accordingly.
Upon substitution of these expressions into MRTD finite-dif-
ference equations, a homogeneous linear system with respect to

, , and is formulated (by equating the integrands
of the previous Fourier integrals). If this system is written as

(45)

the condition that it admits a nontrivial solution yields the
MRTD dispersion relationship

(46)

Equivalently, one can directly substitute the kernels of the pre-
vious integral expressions into the finite-difference equations, as
(14)–(17) imply. These kernels correspond to the well-known
plane-wave type solutions that FDTD dispersion analysis em-
ploys.

It is worth noting that, no matter what the MRTD order is,
the order of the system in (45) remains the same. The con-
sistency of MRTD finite-difference equations and our Fourier
analysis ensures thatany three of the finite-difference equa-
tions being grouped as a linear system with respect to,

, and lead to the same dispersion relationship. This
greatly facilitates MRTD dispersion analysis that has so far been
performed by faithfully following the FDTD dispersion anal-
ysis and without incorporating the multilevel character of the
wavelet basis. For this reason, previous analysis approaches [4]
would lead in this case to linear systems of
unknowns ( and being the maximum wavelet or-
ders in and , respectively). A more detailed discussion on the
modified Fourier analysis for MRTD schemes and its theoretical
and numerical validation will be included in [17].
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