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Fundamental Gridding-Related Dispersion Effects in
Multiresolution Time-Domain Schemes

Costas D. Sarris and Linda P. B. Katekellow, |IEEE

Abstract—The effect of electric and magnetic node arrangement multiresolution time-domain (MRTD) technique) employing
on the dispersion characteristics of the multiresolution time-do- Battle—Lemarie, Daubechies, biorthogonal, and Haar wavelets
main (MRTD) technique is investigated in this paper. Itis first \yare presented in [4]-[9] and references therein. Despite the fact
noted that, by adopting multiresolution analysis principles, the dis- . .
persion behavior of an arbitrary order MRTD scheme can be ex- tha? seyeral techniques have _bee” proposed f_or the ma_lthematlcal
tracted from the ana|ysis of the Corresponding S-MRTD Scheme’ derivation of these methOdS, in all cases, the introduction of one
which is based on scaling functions only. Namely, the introduction wavelet level in a numerical scheme formulated with scaling
of one wavelet level is expected to bring about a refinement in the functions only (often referred to as S-MRTD), is expected to

resolution of S-MRTD by a factor of two. However, this contra- ; ; ; : “ -~
dicts several dispersion analyses of MRTD schemes that have beenlncrease its effective resolution by a factor of two ("dyadic

recently presented in the literature. This conflict between theoret- property), as a direct consequence of multiresolution analysis

ical predictions and numerical observations is resolved through the (MRA) principles [10].
proof that the introduction of wavelets does not result in the ex- Nevertheless, dispersion analyses of several MRTD schemes

pected enhancement of resolution of an S-MRTD scheme, unless ahaye indicated that the addition of wavelets gives rise to phe-
(r:];eertna;g]darrangement of electric and magnetic field nodes is imple- o nena that are not consistent with this expectation. In par-
' ticular, the dispersion analysis of the Battle—Lemarie wavelet-
_Index Terms—DTD, MRTD, multiresolution analysis, numer- - pased W-MRTD scheme that was carried out in [4] showed
ical dispersion. . . o
an only incremental improvement in its accuracy, compared to
the corresponding S-MRTD scheme. This was accompanied by
I. INTRODUCTION the observation of nonphysical modes that were attributed to
spurious side effects of the use of wavelets. Moreover, a Haar

fers a mathematically straightforward and inherently veMRTD dispersion analysis, presented in [7], led to the conclu-
satile method for the analysis of arbitrary electromagnetic gilon that aimost no accuracy improvement was produced by the
ometries, at the expense of computational resources. Inddgoduction of zeroth-order Haar wavelets to the corresponding
since Yee's scheme [1] is only second-order accurate and sgaviR1D scheme, which in this case coincided with FDTD.
sitive to numerical dispersion, a dense discretization of at ledstiS conclusion agreed with the results of the relevant numer-
ten, but usually 25, points per wavelength is necessary for tff@! Study of [8] and provided the additional information that
extraction of a convergent solution. Therefore, the FDTD tredft® &ffect of boundary conditions, which were supposed to be
ment of either electrically large geometries or fine detail stru&mIOIOyecj as a means of coupling wavelet coefficients to the ex-

tures typically results in a computationally intensive, memoﬁ)tat'on source [9], was actually ”69"9'*3'8- Thus, it can safely
and execution time-consuming calculation. be asserted that both Battle—Lemarie and Haar MRTD schemes

As an alternative to the conventional FDTD, several higfitnder study in[4], [7], and [8] were formulated in a way thatin-

order numerical techniques have been developed [2] ain.}é%(ently'prohibited' the use of Wa'lvelets from resulting i.n amgl-
at the discretization of electromagnetic structures at rates tH&SOIUtion analysis-consistent improvement of the dispersion
may even approach the Nyquist limit. Furthermore, the incdpfOPerties of the u_nderlylng coarse grid scheme (this being ei-
poration of subgridding algorithms in the FDTD scheme [31€r Battle-Lemarie-based S-MRTD or FDTD). -
has demonstrated the potential of disconnecting the mean cefin this paper, the source of the aforementioned contradictionis
size within a domain from the size of the smallest geometridvestigated and the conditions under which MRTD schemes at-
detail that is contained in the latter. Thus, a significant reducti$in their expected dispersion properties are sought. Such a study
in the computational cost, connected with the application It particularly important for the reason that a future direction of
FDTD to complex geometries, appears to be attainable. FEUTentwaveletresearch effortsis the development of microwave

cently, wavelet-based time-domain methods (such as the figgnputer-aided design (CAD)-oriented algorithms. This moti-
vates the assembly of theoretical tools that enable a reliable pre-
diction of the accuracy properties of an MRTD type of scheme,
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duced. Hence, a condition for the offset of electric and magnetit, (p, ¢)

scaling functions in the mesh (which in FDTD equals half a cell)
that need be imposed, for the equivalent grid points to be cor- = Z har (t) Z anff’,,f,%i(x) P (2)
rectly positioned in the domain, is derived. Finally, a dispersion n i,m
analysis based on a modified Fourier method recently introduced + Z W HE O rees g (pY T, ()
by the authors and briefly described in the Appendix, is used to Bl e
confirm that the previous condition is sufficient for the achieve- @ ey pe D T
ment of the expected MRTD accuracy. This dispersion analysis * Z w Vi, (2) P (2)
is validated by a series of numerical experiments, whose results e be - "
are shown to be in absolute agreement with it. + YD e H e e
Te,Pa Tz, Pz
[l. ELECTRIC AND MAGNETIC NODE ARRANGEMENT AND - .
EQUIVALENT GRID POINTS IN MRTD X i (@), (2) ()
In this section, MRTD is applied to the following system OfHZ(ﬁ, t)
two-dimensional (2-DY'E. Maxwell’s equations:
OE, _ . 1 [0H,, . OH.,_ = hw(®)> {ani’,‘ffff)w(w) bm(2)
W(pv t):; ?(pv t)_g(pv t) (1) n i, m
’ i Z, Py, Pz .
oH, 10E, _ + Z n,Hi,an 2P gy () z/}n{,p;(z)
Y (p7 t) = (p7 t) (2) Tz, Pz
ot pooz o rana by
8HZ _ 1 8Ey _ + Z n/ 414 m z/}i’,pw(x) d)rn(z)
(7. t)=—— L (0, 1) ®
ot pw Oz I Z Z HE Ve ope Yre s
with p = & + z2. Based on the method outlined in [4], update = e m
equations are derived by the method of moments, assuming
a spatial expansion of electromagnetic field components in x Pl (z)Pns (%) (6)
scaling and wavelet functions of an arbitrary basis and up to b o

arbitrary orders- andr. in the z- and z-directions, . .
y ¥, max, #,max wheren’ = n+1/2,% = i + s,, andm’ = m + s.. Thus,

respectively. However, our analysis is restricted to dyadic, . . )

P Y Y y hile half a time step offset between the update of electric and

wavelet transforms, as they are the most commonly used for the - . : )

. . S . . magnetic field terms is kept (as in FDTD), the offset of electric

purpose of adaptively solving partial differential equations. In . . : L :
X o and magnetic scaling cells in the and z-directions is left as

the subsequent development, the discretization of a 2-D domain

(in which field solutions are sought) in cells @z by Az is a parameter ur_1der investigation. Most MRTD studies, with the
pursued, by means of a wavelet basis, defined by the scaIEng(‘;tSable exception of [11], adopt the choicesgf= s. = 1/2,
function ¢ and the so-called mother wavelgt [10]. Then, ed on the FDTD practice. In this paper, a systematic way of

b (€) = B(£/ A6 —m) denotes thenth scaling function in the determining these offsets is set forth by introducing the notion
¢ = z, z direction. Accordingly, the wavelet functions of orderOf equivalent MRTD gr!d p0|n'ts . .
+ that recursively refine the resolution ¢f, are defined as : Assume that a certain scaling function basis generates elec-
” 2 e ' . " tric field grid points in one dimensioné(= =z, 2): ¢ - A&,

U, p = 272 (2 (¢/Aa —m) —p), wherep =0, ..., 2"~ 1. T2 1,2 Ne. Then, the introduction of wavelets of or-
A basis of pulse functions,, (¢) = h(t/At — n) (defined asin ', — = % - ¢ B : N

. . LN dersr =0, 1, ..., 7¢ max, refines the mesh in thg-direction
[4]), is employed for field expansion in time, whefe denotes > 1

. o . by a factor ofp, = 2"s.m=x*1 since each wavelet level succes-
the time step, limited by the choice &z and A~ through the ~: . . T

sively doubles the resolution of the underlying approximation.

stability co_ndition. Given these d_efinitionEy, Hy, H. are In mathematical terms, thE,, expansion of (4) can be cast in
expressed in the form of the following orthogonal expansmnst'he next equivalent forr,n [18]

FE _, t . Ha pHe
N Byp ) =3 ha(®) > {nBES" 7 oF (@) 9 ()}
= Z hn(t) Z {"E;y,’rﬁqbd)l(x) (/)m(z) " hm 7
" o ) ‘ Wherean = T, max T 11 RZ = T2 max T 11 and{d)R(S)} =
y P Ur, p. T ’ . - . &
+ Z B i), (2) {2R/2p(28(¢/A€) — n)} is the scaling basis that produces by
=P itself an approximation of the same resolution as (4). In fact, the

+ Z W B e %;’l‘pw (z) pm(z)  latter corresponds to the hierarchical multiresolution decompo-
T sition of the former and the coefficients in (4) can directly be
+ Z Z nE‘“;fP Yre,pe deduced from the ones in (7) via the wavelet transform. This

wavelet-induced mesh refinement can also be perceived as a
procedure of generating equivalent grid points that give rise to
(Z)}

Te,Pa Tz:Pz

X P, (@), (4) @amesh of cell sizeaz/p,, Az/p.. Similar observations hold

for (5) and (6).
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Fig. 3. Electric/magnetic field equivalent grid points for zeroth-order Haar

Fig. 1. Haar scaling and mother wavelet functions (space domain). MRTD in one dimension. under formulation I

electric/magnetic grid points in this direction. The choice of
ands, that is consistent with this requirement is as follows:

(i-1)-cell i-cell i+ 1)- cell

2

2i 1 2iwl

H
By 1 Sy =0.5p, = 27 "o max—
.

SZ = 0-5pz = 2_7’1,1‘1121)(_2. (8)

Fig. 2 shows the node arrangement in the zeroth-order Haar
: MRTD, under the common convention of half a cell offset
me x between electric/magnetic scaling cells, henceforth referred to
' : as formulation I. Apparently, equivalent electric and magnetic
: equivalent nodes are now collocated. On the other hand, if
the separation of electric and magnetic scaling cells is chosen
in consistence with (8), which in this case yields an offset of
one-quarter of a cell (Fig. 3), the equivalent grid points are
leap-frogged in space and correctly correspond to the mesh
Fig. 2. _ EIectri(_:/magneticfieId equivalen't grid points for the zeroth-order Hagf an FDTD scheme of cell SiZAa:/Q. This approach will be
MRTD in one dimension, under formulation I. .

hereafter referred to as formulation II.
Despite the fact that the electric/magnetic equivalent grid

This argument is demonstrated for a zeroth-order Hapoint collocation in formulation | was demonstrated for the
MRTD scheme, utilizing Haar scaling and zeroth-order waveletaar basis, its origin is the dyadic nature of the wavelet
functions (Fig. 1), in Figs. 2 and 3, which depict the equivalemtansforms under consideration, in the sense of the argument
grid points that are generated, in both cases, in one dimensitirat was earlier developed. It is the purpose of the following
It is noted that, in general, linear combinations of scalingispersion analyses and numerical experiments to show that the
and wavelet functions yield electric field values at pointdifference in equivalent grids produced by formulations | and Il
(i +(p+0.5) /2" m=T) Az, withp = 0, 1--- 2" =x+1 _ 1 results in different dispersion properties that render the former
In our 2-D example, these figures represesnutsof the mesh, inconsistent while the latter consistent with MRA concepts.
including £, and H. grid points (which are necessary for
the approximation ofs-partial derivatives involved in thé&,
updates). Up to a normalization multiplicative constant, the Ill. GRIDDING EFFECT ON THEACCURACY OF THEHAAR
field values at equivalent grid points within each cell are com- WAVELET-BASED MRTD
puted as the sum and the difference of scaling and zeroth-orger
wavelet terms, respectively. Accordingl¥. equivalent grid "~
points are located afi + s, + (p + 0.5)/2" mxt1)Ag, The relative simplicity of the Haar basis allows for the deriva-
However, the purpose of using wavelets is to implement in thien and dispersion analysis of an arbitrary order scheme ap-
“new” mesh of equivalent grid points the method produceglied to (1)—(3). The update equations of the scheme are derived
by scaling functions only, at a resolution that is finer (in théhrough the method of moments as in [4] and evaluating ana-
z-direction) by the wavelet refinement facter. Hence, if this Iytically the moment integrals pertinent to this technique. Field
method defines half a scaling cell offset between the electegpansions of the type of (4)—(6) are assumed, wheaad )
and magnetic nodes, the wavelet augmented method haseev denote the Haar scaling and mother wavelet functions, re-
define half anequivalentcell offset between the equivalentspectively (Fig. 1). In order to illustrate the difference between

i 2ik1

«: Electric field equivalent grid point
o: Magnetic field equivalent grid point

Derivation of Arbitrary Order Haar MRTD Scheme
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formulations | and Il, the form that the update equation of ele&. Stability and Dispersion Analysis

gi(’i field sfcalingl terms aﬁ_sumes in each one of them, is givenyyjementing the modified Fourier method described in the
elow. In formulation |, this reads as Appendix, a dispersion analysis of arbitrary order Haar MRTD
Y, b is carried out for both formulations | and II. Under the Fourier

i m transform definition
, At
= EY¥ PP o HE ¢,¢5 - H ¢,¢5 . +oo .
i, m + Az i,m i, m’'—1 f()\) — / f(u) CJ)\H du (11)
. z, Pr, p . . .
+ Z C(r, p) (n'Hi,m:# the Fourier transforms of Haar scaling and wavelet functions,
1<r<rs, max, P with respect to a normalized wavenumber variablare
z, Py p ~ . 2 A
_"’Hi,m:#—l ) P(A) = eIN? X sing
47 (12)
) = — M2 g2t
At Ho®® _ e Z/)( ) ¢ A St 4

_— ’ ’
n Aty m niAty—1,m
eAx ’ ’

Substituting these expressions into (44) of the Appendix leads
+ Z C(T, p) (n’HiZ/ZT’,:’m to

1<r<ry, max; P

R¥m2(N)
, 2 742
2,4 A/27t2)
—n’Hi/—wnrl;jb) 9) = joltr/24 JpA 1 — 3 . ( . (13
1, J xp (JPA | 5~ 5 s (V/2) (13)
while in formulation I, it is modified as Furthermore, the following substitutions are made into the fi-
nite-difference equations of the following two schemes:
n+1E§17 PP
, At o . .
_ ) PP z, ¢ z, ¢ » PUr, p pr, o n
nEv‘,y,m, + €Az "’Hi,rn’ _"’Hi,rn’—l nEztl{rn’w — R¥ (_Z)E$¢Ai,nl (15)
| RELr? = RUr(=X)EPP AL, (16)
+ Z 27,/2 ( ,H?,éwr, or 1 y’ W or ) ) ? R
n/ 4 m—1 I AL AT N Rwr,p(_X)RwTr,Pr(_Z)Eéné A"
0<r<r:, max tLm 4 L m
17)
T, Pr or 1
—n/ H , ’ ) .
tm with
At H el HZ el AZ m = eij(kpﬁ’ m Hwnat) (18)
CA.’L’ n’ i, m n’ v—1,m E{? ::i.kT + é‘,kz
I Z or/2 ( ,Hf,w’f,zr_u:b Pi,m = TIAT + ZmAz (19)
0Sr=re max and X = k,Ar andZ = k.Az. Similar substitutions are
L . made for magnetic field components, taking into account the
—ani,’ﬁ{’Z“l ) . different conventions for electric/magnetic node separation.
The condition that the resulting linear systems with respect
(10) to Ep®, HZ®, H?® have nontrivial solutions yields the
following dispersion relationships for formulations | and II,
In(9),¢ =i+1/2,m =m+1/2 and respectively:
C(T’ p) = 27’/2 (61)7 or—1 — 61)7 27“—1_1) ]_ i wAt 2 i (k A ) 2
Sin = SN (Ky AZe
up At 2 2oy 1

where §; ;. denotes Kronecker's delta function. In (1@),=

i+ 1/27maxt2 andm/ = m + 1/27= w2 Whenr,, max = + {
7> max = 0, (9) shows that scaling and wavelet terms are

de-coupled, which is consistent with the relevant observations 1 AfY 2 1 L A 2
in [7], [9]. This is not the case for (10) though, where scaling { sin w_} = { sin — xeﬂ}

and wavelet terms are coupled for all MRTD orders. The same \ ¥p t 2 Aen 2

observations hold for the rest of the update equations that are n { 1 k. Az }2 1)

2
A sin (k. Azeﬂ)} (20)

L . S1
similarly derived. Az 1T
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@
7

N ; TABLE |
~ “'\,\ RESONANT FREQUENCIES(IN GHz) FOR THE2-D CavITY PROBLEM AND
:’5 S RELATIVE ERROR (DEGREES OFFREEDOM = 32 X 32)
34 . A
= s I (n,m) fnm MRTD R.E. MRTD R.E.
é" '\.\. e form.I (%) form.II (%)
% . i ST (1,1) [ 0.6625 J] 0.6624 [ -0.0109 0.6627 [ +0.0434
= 2 (2,1) [ 1.0474 J] 1.0451 | -0.2181 1.0466 | -0.0809
- (2,2) | 1.3249 | 1.3233 | -0.1194¢ 1.3248 [ -0.0109
] — Order=0 (3,1) | 1.4813 || 1.4714 | -0.6678 1.4786 | -0.1825
=2 - -- Order=1 || (3,2) [ 1.6889 [| 1.6827 | -0.3673 1.6878 | -0.0693
g - Order=2 (3,3) | 1.9874 [[ 1.9818 | -0.2822 1.9861 | -0.0652
5 woe Order=3
Z --- Linear
00 Ojl 012 0.3 . - . . .
Normalized Frequency Q / = Finally, stability criteria for the two formulations can be de-

duced from solvability conditions of (20) and (21) and assume
Fig. 4. Dispersion curves for propagation in (1,0) in Haar MRTD mesthe form

(formulation 1) of orders 0 to 3y = 0.05625. 9
At < Aty = T T (22)
Up +
L 16 AzZy  AZ%
-~ “\,\ . 1
s At < Aty = (23)
212 EOPR " il 4 I
g ™ "V Azl Az
§ Y
> i . J
© 8N, i T .
=3 AN ;o C. Numerical Results
=] \\ V4 L . ) )
kS| Vo — Order=0 || In order to numerically validate the results of the preceding
E“ ! // o 8?32::; dispersion analysis, FDTD and MRTD (formulations | and II)
B e w0 Order=3 solutions for thel'E,, ,, modes of a square air cavity struc-
Z 0 ‘ ‘ ~_ Linear ture of dimensions 32 cnx 32 cm are computed and com-
0 Nm‘iﬁlahzed ﬁ)f;quencyogf/ - 08 pared. Haar MRTD schemes of orders 2 by 2, 3 by 3, and 4 by 4

(in z and 2), corresponding to meshes ofx4 4, 2 x 2, and
Fig. 5. Dispersion curves for propagation in (1,0) in Haar MRTD meshk X 1 scaling cells are applied to the structure, along with a
(formulation 11) of orders 0 to 3y = 0.05625. 32 x 32 cell FDTD. Hence, in all cases, the total number of de-
grees of freedom remains constant. Hard boundary conditions
_ deled in MRTD by applying image theory for the update
wherew,, = V2 Azeg = A L andAz.g = Az/p,. € modeled e ) O
up = (1) eft z/Pe Feft z/p- aﬁ]‘smagnetlc field coefficients at the boundaries, as explained in

As proved in [12], the numerical scheme produced by me I " . . .
of a Haar scaling basis is FDTD itself, which can serve he e4]. Under these gridding conditions, our dispersion analysis
' redicts that FDTD and MRTD (formulation 1) have the same

as a measure of comparison for the accuracy of the two - h h f i
mulations under investigation. Indeed, comparing (20) and (2 curacy, as t ey use t. € same number o degrees of freedom
) ' resholding is not applied in this study). This has been also nu-

with the respective formulas provided in [13], itis readily ConFnerically verified; the resonant frequencies that were extracted

cluded that Haar MRTD under formulation | effecFiver imple'by FDTD and all MRTD schemes of formulation Il, assume the
ments an FDTD scheme @f_Axeﬂ X 24”8‘* cell size, wh_He same arithmetic values, some of which are given in Table I. On
Haar MRTD under formulation Il attains an MRA consistent,s ¢ontrary, formulation | shows a significantly worse accu-
effective cell size oRzex x Aze. This is graphically demon- 50y following that of an FDTD scheme of a 4616 mesh. All
strated in Figs. 4 and 5 that depict Haar MRTD dispersion Curvgs, jjations were performed at 0.9 of the stability limit for each
for propagation in the directiofi, 0) and value of the so-called scheme and frequency domain data were extracted from time
Courant-Friedrichs—Lewy number= u,At/Ax = 0.05625.  gomain data over 65 536 time steps. The numerical frequencies
Moreover, the analytical dispersion relationship is plotted angy )| eigenmodes were found to agree well with their theo-
denoted as “linear.” It is thus shown that Haar MRTD undggtical values, as predicted by (20) and (2I)E:; appears to
formulation | always finds itself one level of resolution (pebe an exception for formulation I1. Yet, in this case, the theoret-
direction) below the expected, while formulation Il exhibits gal dispersion error [given by (21)] is0.0076% and, therefore,
consistent dispersion performance. In particularsfor... = numerical accuracy of the calculations clearly dominates phase
7., max = 0, (20) coincides with the dispersion relationship foerrors in the final result. It is thus concluded that Haar MRTD
FDTD of cell sizeAzr x Az (which is the scaling cell size) under formulation 1l attains its expected resolution, just as the
and therefore it is concluded that the addition of zeroth-ordeispersion analysis showed and in contradiction to formulation
wavelets does not improve the accuracy of Haar MRTD undefFinally, the stable character of the proposed Haar MRTD for-
formulation | (as a consequence of the fact that, in this caseulation Il is demonstrated by the electric field spatial distribu-
scaling and wavelet update equations are uncoupled). tions forT F»s andT F3, modes of the cavity, depicted in Figs. 6
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Fig. 6. Electric field distribution fof E.. mode obtained by an order 4 by 4 Normalized space variable (e.g. x /A x)

Haar MRTD (form. Il), with a 1 by 1 scaling mesh.
Fig. 8. Battle—Lemarie scaling and mother wavelet functions (space domain).

Hy(.’L’, t) = Z hn’(t) {n’H:;;’¢ d)rn’ (.’L’) + n’H:;;’w z/}nl(x)}
i @7)
[=}
2 with »’ = n + 1/2, m’ = m + s, ands is the electric/mag-
CI“ netic node offset that is again left as a parameter under inves-
» tigation. The corresponding finite-difference equations assume
the generic form
z—axis(m=2) n+1 B ¥ = nErZri:/w
t b/ Y, b
Fig. 7. Electric field distribution fofl s, mode obtained by an order 4 by 4 - eAx Z YE (p)n-l-(l/?)Hm—l—p-l-S
Haar MRTD (form. Il), with a 1 by 1 scaling mesh. p
At J o
+ = 2 B v H s (29)
and 7. Both modes were resolved by & 11 mesh of an order ) P
4 by order 4 Haar MRTD (five wavelet levels per direction). oy oy
n+1/2Hrn+5 :n+1/2Hrn+s
At o/ v,¢
IV. GRIDDING EFFECT ON THEACCURACY OF + o Z an(p)n_i_(l/Q)Egl-l-p
BATTLE—-LEMARIE WAVELET-BASED MRTD P
— i At J o
A. Derivation of W-MRTD Scheme + = B (D ELL, (29)

For the purpose of showing the generality of the gridding-
related effects on the dispersion of MRTD that were pointed ere the indicated summations extend over the “stencil” of
out for Haar-based schemes, the case study of a one-dim H indi u : X v '

sional Batle-Lemarie wavelet-ased scheme (W-MRTD (4] g TECEC, | & B0PR, on B B8 ne o
presented in this section. In particular, the following system y 9 g 9

, : : : ; unctions (in the spectral domain) that arise in the application of
Maxwell's equations is considered: the method of moments for the derivation of (28) and (29). In

k) 19 particular, the explicit formulas for those read
o Ba(z, 1) == - Hy(z, 1) (24)
o 1 8 aFJ(p)v aH(p)
_Hy ('Tv t):__Ez('Tv t) (25) Feo A s 2 .
ot PEE = [ D BOE s Es) (30)

and discretized using Battle-Lemarie scaling and zeroth-order , "
wavelet functions (Fig. 8) via the method of moments. ElectricﬁE(p)’ P (p)

and magnetic field components are expanded in terms of the /+°° n - A 1
Battle—Lemarie basis as follows: ) EACVIAY 7o Al 2 ts (31)

P

E.(z, t)= Z hn(t){nErZriEzb dm(x) + nErZriw z/)m(x)} aE(p)7 aqéo(p)
e =) A2 (x(p-354)) @2

—0C
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[

TABLE I
STENCIL COEFFICIENTS FOR THEN-MRTD SCHEME (FORMULATION 1)

=
>
T

p ] k@ | s | B

8 || +8.5660-03 | +1.1716-02 | -8.5050-03
7 [ ~1.601e-02 | —2.1870-03 | +1.6226-02
6 [ +2.9926-02 | +4.084e-02 | —2.9150-02
5 [ =5.596e-02 | —7.607e-02 | +5.8646-02
-4 +0.1051694 +0.1403895 ~-9.579e-02
-3 -0.2015483 -0.2474964 +0.2343052
-2 +0.4196303 +0.3727935 -0.3023901
-1 -1.3241406 -0.4279963 +1.9484456
0 +0.7974678 +0.3594450 +4.3699193 .

+1 +0.3590904 -0.2313141 -0.1205340 Norr%;lized FregilzlencyQ/Tgs
+2 -0.1816382 +0.1289039 +0.2431251
T3 [ 79.570e-02 | —6.952e-02 | —7.818e-02
+4 ~5.103e-02 +3.728e-02 +5.605e-02
+5 +2.729%9e-02 -1.996e-02 -2.585e-02
+6 -1.461le-02 +1.06%e-02 +1.502e-02

:Z ‘_‘Z ' iég::gi ;g ' gz;::gg ;Z : ;g;::g; numerically that these bounds are well below the actual Courant
- - - limit of W-MRTD and are therefore too restrictive.
Using the stencil coefficients of formulations | and Il, (34)

=
[
T

o
©

- - S-MRTD

--- W-MRTD (form.I) ||
— W-MRTD (form. II)
wo FDTD
--- Linear

o
=

Normalized Wavenumber X/n

=]

=

Fig. 9. Dispersion curves for W-MRTD (formulations | and Il), S-MRTD,
and FDTD.

/sg"(p), /Jﬁ(p) was employed to deduce the dispersion curves of the two
oo N schemes forr = 0.15925, and the range gf-index variation
= / dA - [p(N)[? sin (A(p £ 5)) (33)  from —py to py andp, = 9. Both curves are depicted in Fig. 9.

For comparison purposes, the dispersion curves of the so-called
whereg(\) andq(\) are provided in [4]. In [4], the parameter S-MRTD (utilizing Battle—Lemarie scaling functions only) and

is set equal to 1/2 (formulation 1) and, thus, the apparent symnfd2TD are also appended. As before, the analytical dispersion
tries in the form of stencil coefficients (30)—(33) render the ele¢elationship is indicated as “linear.”

tric and magnetic field update equations dual. On the other handPefining the turning point of the dispersion curve as the ef-
if, following formulation Il and condition (8)s is set equal to fective Nyquist limit of the corresponding scheme, itis observed
1/4, the only remaining symmetries aré:(p) = 85 (p—1)and that, for S-MRTD, this limitisX = , for W-MRTD under for-

o'y (p) = B (p—1). Some sample values of,(p), Sz (p), and Mulation litis X ~ 1.6r, while for W-MRTD under formula-

B4 (p) are given in Table II. Their corresponding values unddion Il itis X = 2#, which shows that the former is inconsistent

formulation | can be retrieved from [4]. with MRA principles, while the latter does attain the expected
refinement in resolution (compared to S-MRTD) by a factor of
B. Stability and Dispersion Analysis two. In fact, the dispersion curve of W-MRTD, formulation Il

A comparative stability and dispersion analysis of W-MRTIYA" be readily extrapolated from the one of S-MRTD, by re-

schemes under formulations | and II, according to the methBE"C'ng‘X with X/2 in its expression.

: . : ; - ; This is also reflected in the stability condition for the two
described in the Appendix, leads to the following dispersion re- . 7
lationship: PP gdisp schemes. For S-MRTD, this conditionis < 0.6371 = vg,

for W-MRTD, formulation I, it becomes < 0.4384 = 17, and
i? sin2(0/2) = {S LARYS,, } {S L+RYS, } for W-MRTD, formulation I, < 0.3185 = v;;. Hence,
1 Xpr Pu g (235} , ,
(34) 5 x14534 2 ox20. (37)

vr vrr

where Thus, the previous conclusion is verified from a stability per-

1 q(p) #P ¥ spective: The addition of wavelets under the node arrangement

425 of formulation | refines the scaling-based discretization by a
& qu b b factor of less than 1.5, while formulation 1l leads to a com-
¢=ap, oy, Bp: Oy (35) plete exploitation of the wavelets, doubling the resolution of
J P(—X) S-MRTD.
RY(X) == < (36) It is noted that the results of our dispersion analysis of
H=X) W-MRTD (formulation 1) are consistent with those of [4],

andr = upAt/Az andQ = w At, X = k Az. The stability except for the fact that in [4] the dispersion diagram appears
limit is numerically determined as the time step for which (34p consist of two branches, whence the claim that W-MRTD
yields complex frequency values that practically represent theffers from “spurious modes” was supported. However,
transition of the numerical solution into the instability regime, ias discussed in [16], our single branch diagram completely
which it grows exponentially. In [15], the same calculation wadescribes W-MRTD dispersion. With regards to the origin
based on the analytical derivation of lower bounds for the tined modes that were observed in numerical experiments of
step that guaranteed stability. However, one can easily ver[)] and were misconstrued as spurious (being attributed to
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Electric Field Spectral Magnitude

n
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Fig. 10. W-MRTD computational domain for the 1-D cavity case study.
—~10
£
TABLE Il &
RESONANT FREQUENCIES(IN GHZz) FOR THE 1-D CAVITY PROBLEM é 5¢
AND RELATIVE ERROR FORW-MRTD (I, II) g
=
I
Xn fn W-MRTD R.E. W-MRTD R.E. E o s 10 15 20 25 0
™ Form.I (%) Form.IT (%) Frequency [GHz]
0.25 3.75 3.7526 +0.0693 3.7401 -0.2640
0.50 7.50 7.5355 +0.4733 7.4929 -0.0950 Fig. 11. Electric field spectral magnitude for the 1-D cavity problem, derived
0.75 || 11.25 [ 11.3746 | +1.1076 11.2706 [ +0.1831 with W-MRTD under formulations | and II.
T.00 || 15.00 || 15.3050 | +2.0333 || 15.1276 | +0.8507
1.25 || 18.75 || 19.2449 | +2.6395 || 19.0716 | +1.7152
1.50 || 22.50 || 22.4765 | -0.1044 || 23.2963 | +3.5391 R E— T ' 20
1.75 26.25 19.8284 -24.4632 28.1173 +7.1135 R —““‘~~~\\\ N=7
- i
. . . . o N=6 ' "q‘;
the second branch of the dispersion diagram), it was show g5/ A% E
to be the fact that the effective Nyquist limit of this scheme ’g = gt %
lay within the spectral support of the Battle—Lemarie wavelet 3 b=
function. For this reason, whenever this function is part of the % 1r ~ Net g 10%
initial conditions, it excites alias frequencies (that are also well= Nei IJT/// S
predicted by our dispersion analysis). § -2
ot N=2 P +
] & 0.5 iy 5 3
C. Numerical Results E &=
. . . . . - =l
A simple numerical experiment that validates the dispersior z jt JL ,JU
analysis of the two W-MRTD schemes is presented in this sec  L-~ ; ) . JL ; i 0
0 0.05 01 0.15 0.2 0.25 0.3 0.35

tion. In particular, a four-cell computational domain defined by
three interior and two boundary Battle—Lemarie scaling cells
(Ax 1 cm) terminated into hard boundary conditions (thdtig- 12. Dispersion curve (- -) and electric field spectral magnitude (-) for the
are implemented by image theory) is solved as a one-diméer 631ty case study with W-MRTD formulation I

sional (1-D) cavity (Fig. 10). Then, the resonant frequencies

fn = 3.75n [GHZ] of the cavity, corresponding to normalized 2 ‘ ‘ ' ' ‘ ;
wavenumbers\,, = 0.257n, are numerically determined from &
time-domain data of 8192 time steps. For both schemes, a tim,,
step equal to 0.5 of their stability limit is used{ = 7.310 ps 15r 9
and At = 5.312 ps, respectively), for the results to be directly
comparable. The stencil valyg is set equal to 9. The sum of a
scaling and a wavelet function located in the middle of the do-
main is used as the initial condition. By inspection of the spec-
tral form of Battle—Lemarie scaling and wavelet functions [4], it
is readily concluded that this kind of excitation injects into the
grid normalized wavenumbers ranging from 0 t@x.

The resonant frequencies for the first seven modes of the
cavity, obtained by the two W-MRTD schemes under compar- 0
ison, are listed in Table lll. It is clearly shown that W-MRTD
under formulation Il is consistently more accurate than formu- _ , o _
lation 1, except for wavenumbers around the effective Nyqui%_l% i:\}it Dc'zgzr:t'ﬁg C\‘/’Vri\t’ﬁ\(l;/_'?vlaF?Td;'fifrt;'ﬁlgglfnslﬁ’ec”a' magnitude (-) for the
limit of the latter, where its error changes sign (as it reaches this Y Y '
limit) and therefore assumes values close to zero. However, from
that point on, the accuracy difference between the two schenid@sand would appear in any scheme were that excited with
becomes significant. For example, whé&h = 1.75x, formu- wavenumbers above its Nyquist limit.
lation | yields an alias frequency, presenting a relative error of For the same geometry, numerical and theoretical results are
—24.4632%. It is noted that this frequency is a product of inapresented and compared in Figs. 11-13. In particular, Fig. 11
curacy, not a spurious mode, as was previously misinterpretdepicts electric field spectral magnitudes derived by W-MRTD

Normalized Frequency Q / ©

10

17.5

. N=2 | .
0.5r B

’/JL JL Jk 1 o

0 0.05 0.1 0.15 02 0.25 03
Normalized Frequency Q / =«

2.5

o
Electric Field Magnitude

Normalized Wavenumber X
Z
rI‘Io
<
\\




2256 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 12, DECEMBER 2001

under formulations | and Il. Thus, the previously mentionedavelet—wavelet coefficients can be cast in a similar form. In
alias frequency, which corrupts the spectrum derived vjarticular,
formulation 1, is clearly demonstrated, along with the ability

of the second W-MRTD formulation to accurately resolve aHE;y ’,ﬁ% Y
cavity modes that are excited. In Figs. 12 and 13, the dispersion 1 too 1By beomrt)
curves of the two W-MRTD schemes and the cavity field pat- = g"3 / dky dt {C o '
terns that are deduced via their application, are jointly plotted. , R
Square marks indicate the theoretical position of each of the x R¥mr(—k. Az) E§¢} (41)
seven modes on the dispersion curve of the correspondlng S

scheme. The fact that, in all cases, the peaks of the electric flelﬁz m
intersect the dispersion curve at the square marks, constitutesa 1 Foo
numerical validation of our dispersion analysis. Furthermore, — g3 /
Fig. 12 provides an explanation of the way the “spurious” peak

that appears in formulation | field pattern, is actually produced,

as an alias frequency corresponding to the seventh cavity modeJ o pbnt

V. CONCLUSION 1

— o0

dEp dt {C_j(zﬂ'ﬁi, mHwnAt)

—o

x R¥mr (—ky Az) Ej¢} (42)

+oo —
=~ / dE,,dt{e—ﬂwam+‘~'"At>RWP(—km Az)
A necessary condition for the development of MRTD 873 J_oo

schemes with a consistent accuracy performance has been x R (—k. Az) EA;*@} (43)
derived by means of dispersion analysis and confirmed by

numerical experiments. It is also noted that, under the sagjgere

condition, the two different methods of deriving wavelet

schemes presented so far [4], [5] become equivalent. Thus, Rw’ﬁp(X) — 9—/2 —ipX/2 1/)( X/2’). (44)

this work contributes to the fundamental understanding of the ¢(—X)

numerical properties of wavelet schemes and their connection

to MRA principles, definitely resolving discrepancies an!agnetic field components are also transformed accordingly.

contradictions that existed in the MRTD literature for the lad¢Pon substitution of these expressions into MRTD finite-dif-
five years. ference equations, a homogeneous linear system with respect to

Eg¢, H??, and H?? is formulated (by equating the integrands
APPENDIX of the previous Fourier integrals). If this system is written as

THE MODIFIED FOURIER ANALYSIS METHOD FORMRTD T
| fpee free free| —

For the purpose of formally performing a Fourier dispersion A [Ey  HET, H } 0 (45)

analysis of MRTD, the coefficients of electromagnetic field e

pansions in scaling and wavelet functions are first cast in t

form of an inverse Fourier transform. For example, considering

he condition that it admits a nontrivial solution yields the
TD dispersion relationship

(4), one can use the well-known convolution theorem in order det A(F,, w) = 0. (46)
to transform the following expression [derived by means of the
orthogonality properties of basis functions in (4)]: Equivalently, one can directly substitute the kernels of the pre-
1 +o0 vious integral expressions into the finite-difference equations, as
WYL = Ny i dﬁdt Ey(®, 1) ¢i(x) pm(2) ha(t)  (14)—(17) imply. These kernels correspond to the well-known
(38) p:ane-wave type solutions that FDTD dispersion analysis em-
ploys.
into the form It is worth noting that, no matter what the MRTD order is,
1 oo o ) the order of the system in (45) remains the same. The con-
WP = 53 / dk,, dt e ke i mtendt) fu, &6 sistency of MRTD finite-difference equations and our Fourier
T oo (39) analysis ensures thaty three of the finite-difference equa-

tions being grouped as a linear system with respeof?ﬁé,
H?¢¢, and H#¢ lead to the same dispersion relationship. This

B¢ = (k w) H(—ky Az) d(—k. Az) h(—w At) (40) greatly facilitates MRTD dispersion analysis that has so far been

performed by faithfully following the FDTD dispersion anal-

and E ,(k,, w) is the spatio—temporal Fourier transform of/sis and without incorporating the multilevel character of the
E,(p, t). Moreover </> and/ are Fourier transforms of scalingwavelet basis. For this reason, previous analysis approaches [4]
and pulse functiong and h with respect tonormalizedvari- would lead in this case to linear system$ef2= max+7=, max+2
ablesz/Az, z/Az, andt/At, according to the definition of unknowns £, max andr. max being the maximum waveletor-
(12). ders inz andz, respectively). A more detailed discussion on the

Following the same procedure, and after some trivial algerodified Fourier analysis for MRTD schemes and its theoretical
braic manipulations, scaling—wavelet, wavelet—scaling, amatid numerical validation will be included in [17].

with &, andp; ,,, as in (19), while
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